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Abstract. We study the noiseless amplification of an optical image by means of a confocal cavity containing
a parametric medium. We demonstrate, in the ideal situation, the possibility of preserving the signal-to-
noise ratio while amplifying uniformly the entire image. Some specific effects, which may degrade the
performances of the scheme, are taken into account.

PACS. 42.50.Ar Photon statistics and coherence theory – 42.50.Lc Quantum fluctuations, quantum noise,
and quantum jumps – 42.65.Yj Optical parametric oscillators and amplifiers

1 Introduction

The subject of noiseless amplification of optical images be-
longs to the latest developments in the area of quantum
optics. It aims to extend to the spatial domain the possi-
bility of noiseless amplification of temporal optical signals
[1]. The first step towards a noiseless image amplifier was
made in [2], showing that such a device can be realized by
a planar-cavity optical parametric oscillator below thresh-
old operating as a phase-sensitive amplifier. More recently,
the traveling-wave version of the parametric image ampli-
fier, has been studied [3,4]. However, both schemes are
limited by the fact that the amplification takes place in a
non uniform way over the spatial extent of the image. As
a consequence the noiseless character of the amplification
strongly depends on the point in the transverse plane.

Here, instead, we propose a modification of the model
of reference [2] in order to have a spatial uniform per-
formance. This is simply obtained by means of a confocal
cavity. In this case only deviations from the ideal situation
lead to non-uniform transverse effects. To this end we in-
vestigate the influence of finite size pump, phase mismatch
between signal and pump, non perfect resonance between
signal and cavity, and deviation from confocality.

On the other hand, recently, the traveling-wave para-
metric image amplification has been investigated experi-
mentally, both at a classical [5] and at a quantum level [6,
7]. In particular, in [7] noiseless image amplification was
observed for the first time. Hence, our results could be
useful for experimental research in the field of generation,
detection and amplification of low-noise optical images.

The paper is organized as follows. In Section 2 we de-
scribe the optical scheme. In Section 3 we study the light
field dynamics. In Section 4 we investigate the gain and
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Fig. 1. Optical scheme of the parametric image amplifier with
confocal cavity. The latter consists of a ring resonator contain-
ing two equal lenses whose focal length f is one fourth of the
cavity round trip length. Mirror M1 has non-zero transmittiv-
ity, while the others are totally reflecting at the signal wave-
length. All the distances O−L1, L1−R, R−L2, L2−C, C−L1,
C−L3, L3−P, P−L4, L4−I are equal to f .

the noise characteristics of the system. In Section 5 we
establish conditions for noiseless amplification. Section 6
includes the effects of non ideal situation. Section 7 con-
cludes.

2 The optical scheme

The optical scheme we consider is shown in Figure 1. A
faint image which is to be amplified is located in the ob-
ject plane; this image is projected by the lenses L1 and L2

in a χ(2) nonlinear crystal placed inside the cavity. The
amplified image is then projected in the image plane by
the other two lenses L3 and L4. For the sake of simplic-
ity, we take all the lenses with the same focal length f .
We consider a ring cavity configuration with plane mir-
rors, containing two lenses placed at a distance 2f apart.
This configuration is equivalent to a Fabry-Perot confocal
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cavity made of two spherical mirrors of radius of curva-
ture R = 2f separated by a distance R. We also consider
the presence of a pupil of finite area between the lenses
L3 and L4. Introduction of a pupil of finite size is neces-
sary for evaluation of the noise properties of the system.
The amplified image is detected by a dense array of small
photodetectors (pixels) in the image plane.

Let a(ρ, t) and a†(ρ, t) be the radiation field opera-
tors in the object plane. Here, the two-component vector
ρ = (x, y) indicates the position in the transverse plane,
i.e. the plane orthogonal to the mean direction of propaga-
tion z. The field operators obey the free-field commutation
relation [

a(ρ, t), a†(ρ′, t)
]

= δ (ρ− ρ′) δ (t− t′) , (1)

and are normalized so that 〈a†(ρ, t)a(ρ, t)〉 gives the mean
value of the source irradiance at the object plane (ex-
pressed in photons per cm2 per second).

We denote the corresponding operators in the image
plane as e(ρ, t) and e†(ρ, t). The relevant observable is the
surface photocurrent density i(ρ, t) (that is the number
of photoelectrons per cm2 per second without multiplica-
tion by the charge of electron). The mean value 〈i(ρ, t)〉
of the photocurrent density and its correlation function
〈δi(ρ, t), δi(ρ′, t′)〉, where δi(ρ, t) = i(ρ, t) − 〈i(ρ, t)〉, are
given by the quantum theory of photodetection [8]

〈i(ρ, t)〉 = η〈e†(ρ, t)e(ρ, t)〉, (2)

〈δi(ρ, t), δi(ρ′, t′)〉 = 〈i(ρ, t)〉δ (ρ− ρ′) δ (t− t′)
+ η2

[
〈 : e†(ρ, t)e(ρ, t)e†(ρ′, t′)e(ρ′, t′) : 〉
− 〈e†(ρ, t)e(ρ, t)〉〈e†(ρ′, t′)e(ρ′, t′)〉

]
. (3)

Here η is the quantum efficiency of a pixel and the symbol
: . . . : indicates normal ordering.

The correlation function (3) contains two contribu-
tions. The first one is given by the term

∼ δ (ρ− ρ′) δ (t− t′)

and represents the shot noise; it does not depend on the
statistics of the light and is proportional to the mean ir-
radiance in the image plane. The second contribution is
given by a fourth-order field correlation function, describ-
ing normally ordered intensity correlations of the light
field. This term accounts for the statistical properties of
the light, both in the spatial and in the temporal domain.

We take into account the finite area Sd of the pix-
els, and that the photocurrent from each pixel is collected
during the observation time Td. Thus, the quantity of in-
terest is the number of photodetections NI(ρ, t) registered
by the pixel centered at the point ρ in the image plane in
the time window [t− Td/2, t+ Td/2], that is

NI(ρ, t) =
∫
Sd

dρ′
∫
Td

dt′ i(ρ′, t′). (4)

We consider the mean number 〈NI(ρ, t)〉 of registered elec-
trons as the amplified signal of our scheme. Its variance

〈∆N2
I (ρ, t)〉 =

∫
Sd

dρ′
∫
Td

dt′
∫
Sd

dρ′′

×
∫
Td

dt′′〈δi(ρ′, t′), δi(ρ′′, t′′)〉, (5)

characterizes the noise properties of the amplified image;
the power signal-to-noise ratio (SNR) of the amplified im-
age is given by [9]

RI =
〈NI(ρ, t)〉2
〈∆N2

I (ρ, t)〉 · (6)

The equivalent quantities 〈NO(ρ, t)〉, 〈∆N2
O(ρ, t)〉 and

RO, measured in the object plane, describe the signal and
the noise of the input image. For a stationary signal all
these quantities do not depend on time. Our purpose is to
compare RI and RO and to show that under proper cir-
cumstances they can stay equal: we refer to this situation
as noiseless amplification.

Using equations (4, 5) together with the photode-
tection formulas (2, 3) we can express 〈NI(ρ, t)〉 and
〈∆N2

I (ρ, t)〉 through the mean irradiance 〈e†(ρ, t)e(ρ, t)〉
and the intensity correlation function 〈e†(ρ, t)e†(ρ′, t′)
×e(ρ′, t′)e(ρ, t)〉 of the field in the image plane. To eval-
uate these quantities in terms of the input signal and the
gain of the amplifier we need the relation between the field
operators in the image plane and those in the object plane.

3 The light field dynamics

3.1 Intracavity dynamics

For our purposes we consider here an ideal mode-
degenerate-cavity, containing a χ(2) crystal that is capable
to convert a pump field Ap of frequency 2ωs into a signal
field of frequency ωs and vice versa. The crystal is located
at the point C (see Fig. 1), midway between the two lenses
L1 and L2, and is much shorter than the Rayleigh length
of the resonator (or, equivalently, much shorter than the
cavity length). The reference plane z = 0 is taken at the
point C, and the cavity beam waist will be denoted by wc.

For the signal beam we assume that the input/output
mirror M1 has a high reflectivity while all the others cavity
mirrors are completely reflecting; hence the cavity has only
one input-output port at the signal wavelength. Instead,
for what concerns the pump field, we assume that the cav-
ity mirrors are completely transparent at the pump fre-
quency 2ωs; hence the pump simply travels once through
the crystal. Moreover, below the threshold for parametric
oscillations, the pump depletion can be neglected, and the
coherent stationary pump field can be described by means
of its classical amplitude Ap(ρ). Notice that we allow for
dependence of pump profile on the transverse coordinate.

In a ideal confocal resonator all the functions of the
transverse coordinate having a given parity with respect
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to the space inversion ρ → −ρ are transverse proper
modes, that is, they transform into themselves (apart from
a global phase factor) after one cavity round trip. Because
of the cylindrical symmetry it is convenient to consider
among them the Gauss-Laguerre modes [10] that have the
following transverse configuration at the plane z = 0

fp,l,i (ρ, φ) =
2√

2δl0πw2
c

√
p!

(p+ l)!

(
2
ρ2

w2
c

) l
2

Llp

(
2
ρ2

w2
c

)

× exp
[
− ρ

2

w2
c

]{
cos (lφ) for i = 1
sin (lφ) for i = 2

, (7)

with p, l = 0, 1, 2, ... being the radial and angular indices
of the mode, respectively. ρ and φ denote the radial and
angular coordinates in the transverse plane, i.e. ρ = |ρ|,
and φ = arg [ρ]. Llp stand for the Laguerre polynomials of
the indicated argument. In an ideal confocal resonator the
proper modes (longitudinal and transverse) gather into
frequency degenerate families [10], characterized by the
integer index n = 2q + 2p + l, where q (integer) is the
longitudinal index. The frequency separation between
the families is equal to one half the free spectral range.

We now assume that only one of these families, for
definiteness one corresponding to l even, is close to the
frequency of the signal field, while all the others are far
away and do not contribute to the dynamics. Let us de-
note with ωc the frequency of the resonant mode family
having the index n = nc; this family ideally contains an
infinite number of even Gauss-Laguerre modes, that con-
stitute a complete and orthonormal basis for any function
of the transverse coordinates even with respect to coordi-
nate inversion in the transverse plane.

Let us introduce the envelope operator of the intra-
cavity field over the modes of the resonant family in the
following way

B+(ρ, t) =
∑
p,l,i

fp,l,i(ρ)bp,l,i(t), for z = 0, (8)

where the sum is extended to modes with an even parity,
and bp,l,i(t) indicate mode operators, obeying the equal
time commutation relations:[

bp,l,i(t), b
†
p′,l′,i′(t)

]
= δp,p′ δl,l′ δi,i′ . (9)

We assume the validity of the mean field limit [11] which,
together with the assumption of a short crystal, allows to
consider the field B constant along the crystal length.

The Hamiltonian which governs the dynamics of the
signal field in the cavity has two contributions. Hfree de-
scribes the free evolution of the intracavity field

Hfree(ρ, t) = ~
l even∑
p,l,i

(ωp,l,i − ωs)b†p,l,ibp,l,i

= ~(ωc − ωs)
∫

dρ B†+(ρ, t)B+(ρ, t), (10)

where the rapid oscillation at frequency ωs has been elimi-
nated. In writing (10) we have taken into account only the

modes of the quasi-resonant family, for which ωp,l,i = ωc

since the others are far off-resonance and therefore we will
assume they are in the vacuum state in the absence of any
input. The other contribution is given by Hint which de-
scribes the parametric interaction in the crystal

Hint(ρ, t) = i~
γ

2

∫
dρAp(ρ)

[
B†+(ρ, t)2 − B+(ρ, t)2

]
,

(11)

with Ap being the classical amplitude of the pump field,
scaled by the cavity bandwidth γ. Its dependence from the
transverse position vector ρ takes into account the profile
of the pump field which is assumed an even function of ρ.
In the case of a plane pump it becomes independent of ρ.
Without loss of generality we also assume Ap(ρ) real.

In the framework of the input-output theory for open
cavities [12], the intracavity field dynamics is described by
the following Langevin equation

∂

∂t
B+(ρ, t) = −γ

[
(1 + i∆+)B+(ρ, t)−Ap(ρ)B†+(ρ, t)

]
+
√

2γBin
+ (ρ, t), (12)

where∆+ = (ωc−ωs)/γ. Here Bin
+ (ρ, t) denotes the part of

the input field operator even with respect to the inversion
of the transverse coordinate. More precisely we introduce
even and odd input/output operators as

B
in/out
± (ρ, t) =

1
2

[
Bin/out(ρ, t)±Bin/out(−ρ, t)

]
, (13)

where for example ρ is in the upper semiplane. Bin/out

represent the envelope operators of the input/output fields
calculated at a fixed plane z, and obey the following com-
mutation relations[
B

in/out
± (ρ, t), Bin/out†

± (ρ′, t′)
]

=
1
2

[
δ (ρ− ρ′)

± δ (ρ+ ρ′)
]
δ(t− t′),

(14)[
B

in/out
± (ρ, t), Bin/out†

∓ (ρ′, t)
]

= 0. (15)

Equation (12) amounts to an infinite set of uncoupled
equations (one for each transverse point ρ), describing
single-mode optical parametric oscillators with the same
frequency, (that of the even Gauss-Laguerre modes). The
relation linking the outgoing fields Bout

± (ρ, t) with the in-
tracavity and input fields at the cavity input/output port
reads [12]

Bout
± (ρ, t) =

√
2γB±(ρ, t)−Bin

± (ρ, t), (16)

Equation (12) can easily be solved in the frequency do-
main. Taking into account the relation (16) we obtain

Bout
+ (ρ, Ω) = U(ρ, Ω)Bin

+ (ρ, Ω) + V (ρ, Ω)Bin†
+ (ρ,−Ω),

(17)
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where

B
in/out
± (ρ, Ω) =

∫
dt√
2π
B

in/out
± (ρ, t)e−iΩt, (18)

and

U(ρ, Ω) =

[
1− i

(
∆+ −Ω

)] [
1− i

(
∆+ +Ω

)]
+A2

p(ρ)[
1 + i

(
∆+ +Ω

)] [
1− i

(
∆+ −Ω

)]
−A2

p(ρ)
,

(19)

V (ρ, Ω) =
2Ap(ρ)[

1 + i
(
∆+ +Ω

)] [
1− i

(
∆+ −Ω

)]
−A2

p(ρ)
,

(20)

with Ω = Ω/γ. Notice that a simply phase shift relate the
input/output odd part of the field, since we assumed that
only intracavity modes with even parity give dynamical
contributions, i.e. Bout

− (ρ, Ω) = eiψBin
− (ρ, Ω).

3.2 Propagation of the light field

Each one of the lenses 1 and 2 provides the spatial Fourier
transform of the object field, so that the input field calcu-
lated at the cavity center C is given by:

Bin(ρ, t) ≡ a(−ρ, t) . (21)

The lens L3 provides the Fourier transform of the output
field, so that the output field at plane P is:

B̃out(ξ, t) =
1
λf

∫
dρ′Bout(ρ′, t) exp

[
i
2π
λf
ρ′ · ξ

]
, (22)

with λ the signal wavelength. The fourth lens provides its
transform; however, due to the presence of the finite size
aperture in plane P , the field in the image plane I becomes

e(ρ, t) =
1
λf

∫
dξ exp

[
i
2π
λf
ρ · ξ

]
×
{
P(ξ)B̃out(ξ, t) + [1−P(ξ)] B̃vac(ξ, t)

}
, (23)

where P(ξ) is equal to 1 in the pupil area and zero else-
where (in addition we assume this function symmetrical,
i.e. P(−ξ) = P(ξ)). In equation (23) an auxiliary field op-
erator in the vacuum state B̃vac(ξ, t) has been introduced
[2] in order to account for vacuum field fluctuations from
the screen in plane P ; this operator is necessary to pre-
serve the commutation relation (14) for the field e(ρ, t),
but it gives no contribution to the normally ordered cor-
relation functions in equations (2, 3), hence we shall omit
it in what follows.

Now, by inserting equation (22) into (23), we obtain

e(ρ, t) =
1
λf

∫
dρ′ ℘(ρ+ ρ′)Bout(ρ′, t), (24)

where the function ℘(ρ) is related to the pupil frame func-
tion as

℘(ρ) =
1
λf

∫
dξP(ξ) exp

[
i
2π
λf
ξ · ρ

]
, (25)

and represents the impulse response of the optical system.
For infinitely large pupil ℘(ρ) = λfδ(ρ), and e(ρ, t) ≡
Bout(−ρ, t).

Furthermore, by means of the relations (17, 21) we can
write

e(ρ, Ω) =
1
λf

∫
dρ′ ℘(ρ+ ρ′)

[
U(ρ′, Ω)a+(ρ′, Ω)

+ V (ρ′, Ω)a†+(ρ′,−Ω)
]

− 1
λf

∫
dρ′ ℘(ρ+ ρ′)

[
eiψa−(ρ′, Ω)

]
, (26)

where a± are the even/odd part of the field in the object
plane.

Finally, the optimum choice of the pupil area Sp can
be done as follows. Let the input image of area SO, have
details (or image elements) of certain area Sel � SO.
Due to the presence of the pupil of area Sp, the opti-
cal system transforms a point source in the object plane
in a diffraction pattern of area approximately equal to
Sdiff = (λf)2/Sp, which represents the minimum resolu-
tion area for an image (see e.g. [3] for more details). Thus
we have to require:

Sdiff =
(fλ)2

Sp
< Sel . (27)

4 The amplified image and its fluctuations

In our analysis we shall restrict ourselves to stationary
images. We assume that the field in the object plane is
in a coherent state with its complex amplitude s(ρ) mod-
ulated in space. This spatial modulation of the complex
amplitude represents the input signal of the scheme or the
image which is to be amplified.

For simplicity we now consider the situation where
s(ρ) is a real and even function of ρ, while in Section 6
we shall consider a more general case. It follows from the
stationarity of the input signal that

〈a(ρ, Ω)〉 = 〈a+(ρ, Ω)〉 = s(ρ)2πδ(Ω),
〈a−(ρ, Ω)〉 = 0 . (28)

Now, by using equations (26, 28) we can evaluate any nor-
mally ordered correlation function of the field operators in
the image plane. However, to obtain explicit analytical re-
sults we make a further assumption. Since the typical lin-
ear spatial scale of change of the impulse response function
is S1/2

diff = λf/S
1/2
p , we suppose that this distance is much

smaller than the typical scale of change of U , V as well
as of the input signal s. This allows us to take the latter
functions out of the integral when they enter as a product
with the impulse response function.



S. Mancini et al.: Noiseless amplification of images in a confocal cavity 503

-4 -2 2 4

2

4

6

8 w  / w  = 20p c

w  / w  = 10p c

w  / w  = 5p c

w  / w  = 1p c

G

ρ / wc

Fig. 2. Gain G (Eq. (31)) as a function of transverse distance
ρ for different values of the pump waist. Here the pump has
a Gaussian profile Ap(�) = 0.5 exp[−ρ2/w2

p], and we assume
perfect resonance ∆+ = 0.

Then, let us calculate the mean irradiance. We obtain

〈e†(ρ, t)e(ρ, t)〉 = s2(ρ) |U(ρ, 0) + V (ρ, 0)|2

+
Sp

(λf)2

1
2π

∫
dΩ |V (ρ, Ω)|2 . (29)

The first term in equation (29) gives the amplified signal,
while the second one describes the spontaneous fluores-
cence photon contribution. This contribution is finite pro-
vided the pupil has a finite area Sp, while it diverges when
the area Sp grows infinitely. The reason for this divergence
lies in the infinitely large spatial bandwidth of our system.

Now, to calculate the relevant physical quantities (4,
5), we make two additional simplifying assumptions. First
we assume that the size of each pixel in the photodetection
array is small compared to the spatial scale of variation
of the output field, so that we can substitute integration
over the pixel area by multiplication by Sd, with Sd ≥ Sdiff

and with the impulse response function approximated by
a delta function. Second, we consider an observation time
Td long compared with the inverse cavity bandwidth γ−1,
which is the characteristic time scale of our system.

From equations (4, 2, 29) we easily obtain the mean
number of photoelectrons

〈NI(ρ, t)〉 = ηSdTds
2(ρ)G(ρ)

+ η
SpSd

(λf)2

Td

2π

∫
dΩ |V (ρ, Ω)|2 , (30)

where we have introduced the gain factor

G(ρ) = |U(ρ, 0) + V (ρ, 0)|2 =
[

1 +Ap(ρ)
1−Ap(ρ)

]2

, (31)

considering the situation of perfect resonance, i.e. ∆+ = 0.
Since in this model each point of the transverse plane rep-
resents an independent parametric oscillator whose gain
is related to the strength of the pump in the same point,
the spatial extent where the amplification takes places is
determined by the pump size, as can be seen in Figure 2.

For the variance 〈∆N2
I (ρ, t)〉 we use equations (5, 3,

2, 26). Substituting e(ρ, Ω) from equation (26) into the

intensity correlation function

〈e†(ρ, t)e†(ρ′, t′)e(ρ′, t′)e(ρ, t)〉

in equation (3) we obtain sixteen mixed correlation func-
tions of operators a+(ρ, Ω) and a†+(ρ, Ω) at four different
points ρ and frequencies Ω (we recall that the terms con-
taining a−(ρ, Ω) give zero contribution). Using the com-
mutator (14) we bring them to the normal order and then
average over the coherent state of the input field. As a re-
sult we obtain two different kinds of terms: the first arises
from interference of the amplified signal with the noise
from spontaneous parametric radiation, and the second
from self-interaction of this noise.

Finally we arrive at the following result:

〈∆N2
I (ρ, t)〉 = 〈NI(ρ, t)〉

+ η2SdTdg(Sd)s2(ρ)G(ρ) {G(ρ)− 1}

+ η2 SpSd

(λf)2

Td

2π

∫
dΩ |V (ρ, Ω)|2

[
1 + 2 |V (ρ, Ω)|2

]
,

(32)

where the geometrical factor g(Sd) is defined as:

g(Sd) =
1
Sd

∫
Sd

dρ
∫
Sd

dρ′
1
2

[δ(ρ− ρ′) + δ(ρ+ ρ′)] .

(33)

Clearly, for a symmetric detection region, which for ex-
ample corresponds to detecting photons from two sym-
metric pixels in the image plane, g(Sd) = 1; on the other
side detection of photons from a single pixel in the image
plane corresponds to g(Sd) = 1/2. The term 〈NI(ρ, t)〉 in
equation (32) represents the shot noise level, that is, the
noise associated to a coherent state with the same mean
intensity. In the remaining part of the formula, the term
proportional to η2s2(ρ)G(ρ) stems from the interference
of the amplified signal with noise and the other quadratic
in η from the self interference of the noise. This latter de-
termines the inherent noise of the amplifier present even
without the signal on its input.

5 Conditions for noiseless amplification

Let us first consider the mean number of detected photo-
electrons given by equation (30). It contains two contribu-
tions. The first one, proportional to the intensity s2(ρ) of
the input image at the point ρ, carries all the information
about the amplified image. The second term does exist
even when no signal is present at the input. Its physical
origin is in the phenomenon of spontaneous parametric
down-conversion. For a large pump spot size, the func-
tion V (ρ, Ω) can be assumed almost flat over the region
when the image is non zero. Hence, this term gives a con-
tribution approximately uniform over the image region;
however this contribution increases with the pupil size Sp

at the expenses of the visibility of the amplified image.
This imposes a lower limit on the intensity of the input
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signal s(ρ) that can be amplified without adding noise. In-
deed, one can neglect the spontaneously down converted
photons compared to the amplified signal if

s2(ρ)G(ρ)� 1
Sdiff

1
2π

∫
dΩ |V (ρ, Ω)|2 . (34)

In the case of high gain, G � 1, we have |U | ' |V | � 1,
and G ' 4|V |2. By approximating

∫
dΩ |V (ρ, Ω)|2 ≈

γ|V (ρ, 0)|2 condition (34) can be rewritten as

s2(ρ)SdiffTamp � 1/4, (35)

where we have introduced the typical temporal scale of
the system as Tamp = 2π/γ.

Analogously, a condition for noiseless amplification
arises from equation (32) for dispersion of the observed
number of photoelectrons. Namely, the self-interference
term in equation (32), given by the last integral, must
be small compared to the term due to the interference of
the amplified signal with noise, i.e. the term proportional
to η2s2(ρ)G(ρ). This gives, provided Sd > Sdiff ,

s2(ρ)SdiffTamp � 1/8, (36)

which for the order of magnitude is equivalent to condi-
tion (35).

Let us now consider the situation of a symmetric detec-
tion region in the image plane (that is g(Sd) = 1). When
conditions (35, 36) are fulfilled the signal-to-noise ratio of
the amplified image is given by using equations (6, 30, 32),
obtaining

RI =
ηSdTds

2(ρ)G(ρ)
1 + η [G(ρ)− 1]

· (37)

Furthermore, to study quantitatively the noise perfor-
mance of the amplifier we introduce the noise figure F as

F =
RO(η = 1)

RI
· (38)

Since a linear amplifier cannot improve the signal-to-noise
ratio in the input image, the noise figure is always not
smaller than unity. We refer to the case F = 1 as noise-
less amplification. Notice that in equation (38) the input
signal-to-noise ratio refers to ideal photodetection in the
input plane. As explained on reference [2], this condition
is necessary to obtain the noise figure characterizing the
noise added by the amplifier, but not the noise in the pre-
amplification stage (like non-ideal photodetection in the
object plane). Without such correction, i.e. allowing for
non-ideal photodetection in the object plane with η < 1,
one could obtain a noise figure smaller than unity. The
physical features of this phenomenon lies in the fact that
noiseless amplifier can compensate the imperfection of the
photodetection scheme on the pre-amplification stage and
formally “improve” the signal-to-noise ratio of the input
image degradated by non-ideal photodetection array.

The signal-to-noise ratio in the object plane is defined
in analogy to (6). Since

〈NO(ρ, t)〉 = SdTds
2(ρ), 〈∆N2

O(ρ, t)〉 = SdTds
2(ρ), (39)

Fig. 3. Noise figure F (Eq. (41)) as a function of the quantum
efficiency η for different values of the gain, for a symmetric
detection region in the image plane. Here ∆+ = 0.
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Fig. 4. Noise figure F (Eq. (41)) as a function of transverse
distance ρ for different values of quantum efficiency. The pump
profile is given by: Ap(�) = 0.5 exp[−ρ2/w2

c ], and ∆+ = 0.

we find

RO =
〈NO(ρ, t)〉2
〈∆N2

O(ρ, t)〉 = SdTds
2(ρ). (40)

With the aid of equations (37, 40) we obtain

F =
1
η

{1− η + ηG(ρ)}
G(ρ)

· (41)

It may be seen that the ideal value of F = 1 is reached
with any gain (satisfying the conditions (35, 36)) when
η = 1. On the other side, for η < 1, the gain should be in-
creased to compensate the effect of non efficient detection
as shown in Figure 3.

It is also worth noting that the noise figure becomes in-
dependent from the vector position ρ, that is, independent
from the pump profile, when η approaches unity (Fig. 4).

Incidentally, if consider detection of light from a sin-
gle pixel in the image plane (that is g(Sd) = 0.5), it can
be shown that equation (41) still holds given that η is re-
placed by η/2. Hence it results the possibility of noiseless
amplification only for high gain, since detection from a sin-
gle pixel corresponds to the case of not perfect efficiency
stated above.
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6 Beyond the ideal case

Till now we used a set of assumptions tailored to get
the best and simplest results. However, in practical sit-
uations many of these hypothesis are not completely ful-
filled. Hence we shall investigate what happens beyond
the ideal case. First, we assumed that the pump and the
signal were exactly locked in phase (for definiteness we as-
sumed both of them real); however in practical situations
a perfect locking of the two phases could be difficult to
achieve. In order to allow for a phase mismatch between
signal and pump, it is sufficient to make the replacement:

U(ρ, Ω)→ U(ρ, Ω)eiζ(ρ); V (ρ, Ω)→ V (ρ, Ω)e−iζ(ρ),
(42)

where ζ = arg[s] − arg[Ap]/2 represents the phase mis-
match between the two fields. We allow for the possibility
to have such a mismatch dependent on the transverse vec-
tor position.

Then, we introduce the phase sensitive gain Gϕ as

Gϕ(ρ) =
∣∣∣U(ρ, 0)eiζ(ρ) + V (ρ, 0)e−iζ(ρ)

∣∣∣2 (43)

= cos2 ϕ(ρ)e2R(ρ) + sin2 ϕ(ρ)e−2R(ρ),

where the squeezing parameter R(ρ) and the orientation
angle ϕ(ρ) are given by

exp [±R(ρ)] = |U(ρ, 0)| ± |V (ρ, 0)| , (44)

2ϕ(ρ) = arg [U(ρ, 0)]− arg [V (ρ, 0)] + 2ζ(ρ). (45)

Repeating step by step the derivation of the noise figure,
we get the more complete expression:

F =
1
η

{
1− η + η

[
cos2 θ(ρ)e2R(ρ) + sin2 θ(ρ)e−2R(ρ)

]}{
cos2 ϕ(ρ)e2R(ρ) + sin2 ϕ(ρ)e−2R(ρ)

} ,

(46)

with

2θ(ρ) = 2 arg
[
U(ρ, 0)eiζ(ρ) + V (ρ, 0)e−iζ(ρ)

]
− arg [U(ρ, 0)]− arg [V (ρ, 0)] . (47)

Figure 5 shows the behavior of the noise figure and the
gain as functions of the phase mismatch between the pump
(assumed here with a flat profile) and the signal field.

Another element that may degrade the performances
of the scheme is a non perfect tuning of the cavity; so far
we assumed exact resonance, which implies that the max-
imum gain throughout the transverse plane is achieved for
a zero phase mismatch between pump and signal. Figure 6
plots F and G versus the cavity detuning, for a flat pump
profile, and ζ = 0. It should be noted that when ∆+ 6= 0,
the value of the phase mismatch ζ that optimizes the gain
and noise figure is different from zero, and changes from
point to point if the pump is not flat; however when the
pump profile varies slowly over the transverse plane, the

Fig. 5. Noise figure F (Eq. (46)) and gain G (Eq. (43)) as
functions of phase difference ζ between pump and signal field.
Here, the pump has a flat profile with amplitude Ap = 0.5, the
quantum efficiency is η = 1, and ∆+ = 0.

Fig. 6. Noise figure F (Eq. (46)) and gain G (Eq. (43)) as
functions of the cavity detuning ∆+. The pump is chosen flat
with amplitude Ap = 0.5. Furthermore, ζ = 0 and η = 1.

optimal phase mismatch can be chosen to give the maxi-
mum gain at ρ = 0.

From the above figures we may infer that the perfor-
mances of the scheme are not so much sensitive to prob-
lems like cavity tuning or phase control.

Now, let us focus on the problem of non perfect con-
focality. A slight deviation from the confocal geometry
removes the mode degeneracy, and causes the frequencies
of the modes belonging to the quasi-resonant family to de-
pend on the transverse index 2p+ l; as a consequence the
cavity detuning of the even Gauss-Laguerre modes takes
on the form:

∆pl = ∆+ + (2p+ l + 1)ε . (48)

where the non-confocality parameter ε is given by (see e.g.
[13])

ε =
Λ

2γ

[
4
π

tan−1

(
d√

d(2R− d)

)
− 1

]
, (49)

where Λ denotes the free spectral range of the resonator; d
is the distance between the two spherical mirrors of radius
of curvature R in the case of a quasi-confocal Fabry-Perot
resonator, or the distance between the two lenses of focal
length f = R/2 in the equivalent ring-cavity configuration
(shown in Fig. 1). The perfect confocal geometry corre-
sponds to R = d, that is, ε = 0; a small deviation from
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the ideal case can be introduced by taking R = d + δR,
with |δR/d| � 1. By keeping only the leading order in
δR/d in equation (49), the parameter of non-confocality
can be expressed as:

ε ≈ − Λ

πγ

δR

d
· (50)

This shows that, provided δR/d is small enough, a large
number of even Gauss-Laguerre modes are much closer
to the resonance frequency ωs than the next family of
modes, whose frequency is half a free spectral range apart;
hence we are still allowed to take into account in our model
only the modes of the quasi-resonant family. By exploit-
ing the field expansion (8) it is possible to obtain a set of
Langevin equations governing the dynamics of the mode
amplitude operators. In the case of a flat pump profile,
such equations are decoupled, and analytical calculations
of the input/output relations can be performed for each
mode. Turning back to spatial coordinates, and consider-
ing an infinite aperture in plane P , operators in the image
plane result linked to those in the object plane by the
following transformation:

Bout
+ (ρ, Ω) =

∫
dρ′
[
U(ρ,ρ′, Ω)Bin

+ (ρ′, Ω)

+ V(ρ,ρ′, Ω)Bin†
+ (ρ′,−Ω)

]
, (51)

where the kernels of the integral are given by:

U(ρ,ρ′, Ω) =
∑
p,l,i

′
fp,l,i(ρ)Up,l(Ω)fp,l,i(ρ′), (52)

and

V(ρ,ρ′, Ω) =
∑
p,l,i

′
fp,l,i(ρ)Vp,l(Ω)fp,l,i(ρ′). (53)

Here Up,l(Ω) and Vp,l(Ω) are given by equations (19, 20)
with the replacement ∆+ → ∆p,l.

From equation (51) we can notice that the first effect
of a deviation from perfect confocality is to introduce a
finite resolution in the amplification scheme: the device is
not able to resolve details of the input image on a length
scale smaller than the scale of variation of the kernels of
the integral (51).

It can be noticed that in the confocal limit ε → 0,
Up,l and Vp,l do not depend on the modal index and can
be extracted from the sums (52, 53). The completeness of
the mode set for the even functions of ρ then leads to

lim
ε→0
U(ρ,ρ′, Ω) = U(Ω)

1
2

[δ(ρ− ρ′) + δ(ρ+ ρ′)] , (54)
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Fig. 7. Case of non-perfect confocality. The convolution kernel
V(�,�′, Ω = 0) is plotted as a function of the second point
along the radial direction ρ′, scaled to the cavity waist wc;
ρ = 2wc and the angular coordinates of the two points coincide.
The three curves correspond to (a) ε = 10−2, (b) ε = 0.5×10−2 ,
(c) ε = 0.25× 10−2; Ap = 0.5, ∆+ = 0.

and a similar expression for V. Thus for ε small but finite
we may expect the integral kernels to be strongly peaked
around ρ′ = ±ρ. This is actually the case, as shown by
Figure 7, which gives an example of the scale of varia-
tion of V along the radial coordinate, for decreasing val-
ues of the non-confocality parameter; values of ε smaller
than 0.2 × 10−2 are unfortunately not accessible to nu-
merical calculations, because the routines that generate
the Gauss-Laguerre modes become unstable at very high
modal orders.

To proceed on with explicit calculations, we now as-
sume that the input image has a scale of variation much
larger than that of V, U , so that the all the quantities
referring to the input signal can be extracted from the
integral sign in (51). This allows us to evaluate the gain
function as:

G(ρ) =
∣∣∣IU (ρ)eiζ(ρ) + IV(ρ)e−iζ(ρ)

∣∣∣2 , (55)

where we have introduced

IU (ρ) =
∫

dρ′U(ρ,ρ′, 0)

=
√

2π
∑
p

fp,0,1(ρ)(−1)pUp,0(0), (56)

and

IV(ρ) =
∫

dρ′V(ρ,ρ′, 0)

=
√

2π
∑
p

fp,0,1(ρ)(−1)pVp,0(0). (57)

The noise figure results as

see equation (58) below.

F(ρ) =
G(ρ) + 2η

{
|IV(ρ)|2G(ρ) + Re

{
IV(ρ)IU (ρ)

[
I∗U(ρ)e−iζ(ρ) + I∗V(ρ)eiζ(ρ)

]2}}
ηG2(ρ)

(58)
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Fig. 8. Case of non perfect confocality. The gain G (Eq. (55))
is plotted versus the distance from the axis of the scheme, for
(a) ε = 10−2 and (b) ε = 0.5 × 10−2. Solid lines: input signal
and pump have flat wavefronts with a phase mismatch ζ = 0;
dashed lines refer to a signal input phase quadratic in the radial
coordinate. The pump profile is flat, with amplitude Ap = 0.5,
η = 1, and ∆+ = 0.

Figures 8a and 8b plot the gain G as a function of the
distance from the optical axis, scaled to the cavity waist,
for two different values of the non-confocality parameter
ε, and for a flat pump profile. The solid lines correspond
to both pump and input signal having a flat wavefront,
with the constant phase mismatch ζ chosen in order to
optimize the gain for ρ = 0. In comparison with the ideal
confocal case, the gain is no more uniform over the trans-
verse plane, and the size of the region of the input image
that can be amplified decreases as the non-confocality pa-
rameter ε increases, that is, with increasing deviation from
the confocal geometry. However, by comparison with Fig-
ure 7, the size of the amplified region results large com-
pared to the resolution length (the width of the peaks in
Fig. 7); thus when departures from the confocal geometry
are small, a still large number of input image pixels can
be efficiently amplified.

The reasons why the gain is not uniform are basically
the following:

1. the available gain is not distributed in a uniform way
among the modes, because, when ε is not zero, high
order modes are off-resonance, and hence are not am-
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Fig. 9. Case of non perfect confocality. Noise figure versus
distance from the optical axis. Solid lines: input signal and
pump have flat wavefronts and the same phase; dashed lines:
the input signal has a quadratic wavefront. Other parameters
as in Figure 8.

plified by the device. In regions far away from the op-
tical axis only high order Gauss-Laguerre modes give
a non-vanishing contribution, and hence these regions
of the input image are not amplified;

2. the amplification undergone by each mode is sensitive
to the phase mismatch ζ; a fixed phase mismatch max-
imizes the gain for modes corresponding to a given in-
dex 2p+ l. For example, in the plot, the choice ζ = 0
optimizes the gain for the TEM00 mode, but not for
high order modes.

There is however a way to partially compensate for the
second effect; indeed it turns out that a quadratic input
wavefront may result in a increase of the gain in points far
away from the optical axis, as shown by the dashed lines
in Figure 8.

If, on the one side, the improvement obtained in this
way for what concerns the gain is rather marginal, on the
other the noise figure of the amplifier benefits in a substan-
tial way from this kind of arrangement. Figures 9a and 9b
plot the noise figure as a function of the radial coordinate
in the transverse plane, under the same conditions as Fig-
ures 8a and 8b. The solid lines correspond to a flat input
wavefront, while the dashed lines correspond to an input
signal wavefront quadratic in ρ, and show that noiseless
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amplification can be achieved in a almost uniform way
over the transverse plane.

Clearly the curvature of the input wavefront must be
carefully chosen in order to minimize the noise figure
(maximize the gain); in the numerical calculations this
choice is made by analysing the dependence on ρ of the
function arg[IU (ρ)]− arg[IV(ρ)]. In an experimental real-
ization a quadratic wavefront could be introduced by ad-
justing the optical scheme. For example, a displacement
δz of the object plane away from the lens L1 gives the
desired effect; in fact in such a case the propagation of the
Gauss-Laguerre modes introduces a phase factor [13]

arg [fp,l,i] ≈
[
ρ2

w2
c

(1− δz) + (2p+ l + 1)
]
δz, (59)

that can partly compensate the degrading effects on the
signal.

7 Conclusions

Summarizing, we have studied the confocal geometry for
parametric image amplification in optical cavities. This
scheme offers the possibility of amplifying a faint image at
once, avoiding any scanning procedure. Moreover, its per-
formances turn out to be not much fragile to experimental
imperfections. The obtained results could be of interest in
many areas of physics which would benefit from having
a possibility of noiseless amplification of faint optical im-
ages.

We mention for example microscopy, which in this case
would be able to widen the range of finest detectable ob-
jects, or bio-medical imaging, where it may be necessary to
use low intensity light in order to avoid damage to tissues.
An other field which comes to mind is that of astronomy,
where, however, a problem is represented by the fact that
the light coming from stars is not coherent.
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